
OPTOELECTRONICS AND ADVANCED MATERIALS – RAPID COMMUNICATIONS Vol. 8, No. 5-6, May - June 2014, p. 555 - 566

Investigaton of computational load and parallel

computing of Volterra series method for frequency

analysis of nonlinear systems

S. KAÇAR
a,*

, İ. ÇANKAYA
b
, A. F. BOZ

c

a,c
Department of Electrical and Electronic Engineering, Technology Faculty, Sakarya University, Sakarya, Turkey

b
Department of Electronic and Communication Engineering, Yıldırım Beyazıt University, Ankara, Turkey

In this study, one of the prominent and the basic analytical methods for the frequency analysis of non-linear systems,
Volterra Series method is discussed. Then the computational load of the method and the symmetrization process is
investigated. For this, a third-order non-linear system model has been used and the frequency response of the system has
been obtained. The investigation is performed by detecting the periods of every step of the method and the symmetrization
process. The obtained results are presented in tables and graphs. The factors which affect the performance of the method
are identified. Finally, parallel computing of the method has been realized on 8-thread computer by using MATLAB

®
 parallel

processing toolbox and the results (speedup and efficiency) have been interpreted.

(Received November 11, 2013; accepted May 15, 2014)

Keywords: Non-linear systems, Volterra series, Frequency response functions, Symmetrization process, Computational load, Parallel

 computing

1. Introduction

The most realistic way to get information about

systems is to implement the system (physically), to

interpret obtained results. However, because of some

reasons such as inappropriate environmental conditions,

dangerous processes, high cost and time loss, systems

cannot be implemented physically and experimental

studies cannot be performed. Therefore, the most rational

and easy way to get information about systems is

modelling the relationship between the input and output of

the systems by mathematical expressions, analyzing

systems with the appropriate methods and so that the

desired results can be obtained. Mathematical models of

the systems depend on the characteristics of elements

composing the system and environmental conditions. For

that reason, there are a wide variety of mathematical

models. According to mathematical models, systems can

be classified as shown in Fig. 1. In Fig. 1, system classes

which are coloured grey are attended in this work. In the

figure, dashed lines mean that the classification on the

branch is same as other branch’s classification.

Real systems are modelled completely with a non-

linear structure. Non-linear components are capable of

accelerating, attenuating, reinforcing or retarding in the

non-linear systems. The non-linear terms in the non-linear

system models can be exponential, radical, denominator,

multiplied with each other or absolute expressions of

variables. Unlike linear systems, various behaviours such

as jump phenomena, bifurcation, and chaos can be seen in

non-linear systems.

Fig. 1. Classification of Systems [1].

There are several methods for modelling and analysis

of the non-linear systems. Approaches as Volterra,

bilinear, perturbation methods can be used for modelling

of the systems. There are many methods used in time and

frequency domains for the analysis [2]. Methods such as

perturbation method, averaging method, multiple-time

scale method can be referred as the methods applied in the

time domain. Methods such as Volterra Series Method,

describing functions method, generalized harmonic

balance method can be examplified as methods applied in

the frequency domain.

556 S. Kaçar, İ. Çankaya, A. F. Boz

It is thought that using the time domain methods is

easier for system analysis. However, system behaviours

cannot be fully analysed in time domain. Therefore, for

the system analysis, especially for non-linear system

analysis, it is more useful to use the frequency domain

methods.

The Volterra Series Method (frequency response

function method), the generalized harmonic balance

method, the describing functions method, which are most

commonly used the frequency domain methods of non-

linear system analysis, are based on the Volterra theory.

The most basic and general method of these methods is

The Volterra Series Method.

The Volterra Series Method is first studied by Vito

Volterra. He conducted the first study on Volterra Series

[3]. Volterra showed that a non-linear system can be

defined and output of a single input analytical system can

be explained with infinite Volterra Series which is named

with his name. After Volterra, Brilliant showed that non-

linear memoryless systems can be modelled and analyzed

by the Volterra Series Method [4]. In Bedrosian and Rice's

study, The Volterra Series were moved to the frequency

domain by using the Fourier transform and the harmonic

probing algorithm was designed so that exponential input

method was produced and communication systems were

analyzed [5]. Billing and Tsang also adapted this

algorithm to discrete. This topic was covered in three

separate studies [6, 7, 8]. By Billings and Peyton Jones, for

the direct production of the generalized frequency

response functions obtained by using Volterra Series from

non-linear difference equations and non-linear integro-

differential equations, recursive algorithms were

developed [9,10]. In another study a new error-free

algorithm for the determination of Volterra kernels of

discrete non-linear systems was presented [11]. For the

non-linear system analysis which uses Volterra Series

theory, some truncations should be done. Billings and

Lang handled this context and developed an efficient

algorithm for determining the truncations and useful terms

for Volterra Series analysis [12]. A new procedure, which

processes Volterra kernels by recursive algorithms, was

presented for determining the parameters by Chatterjee

and Vyas [13]. In addition, the books written by Schetzen

[14] and Rugh [15] may be referred as key resources

related to The Volterra Series method. In the study of

Peyton Jones, which is the main reference of this present

work, a simplified algorithm for the computation of the

frequency response functions was produced [16]. The goal

of the algorithm is to obtain nth order frequency response

functions (FRF) without using recursive functions of the

traditional method. In the new method, only lower order

FRFs which can contribute to nth order FRF are produced.

The algorithm of the study has been used in a .NET based

web interface for non-linear system analysis by Kaçar and

Çankaya [17]. For non-linear Volterra systems including a

non-linear state equation and a non-linear output function,

frequency response functions and characteristics were

developed and discussed by Jing et al. [18]. Jing and Lang

developed a new function based on parametric

characteristics of generalized FRFs for Volterra systems

modelled by Narx (non-linear auto regressive with

exogenous input) model [19]. In another study, an

approach for deriving the Volterra Series expansion for the

multi-linear discrete system involving input - output

coupling terms was developed [20].

This paper is organized as follows. Volterra model

structure, time domain and frequency domain

representations of non-linear systems are explained in the

next section. In the third section, old and new approaches

of harmonic probing method developed by Peyton Jones

are described. Then the computational load of the new

approach which expressed as simplified method in [16] is

examined in terms in the fourth section. In the fifth

section, parallel computing of the method is performed by

using MATLAB
®
 parallel processing toolbox and the

results have been presented as graphics. The final section

includes conclusions and suggestions.

2. Identification of non-linear systems in time
 and frequency domains with volterra series

In the time domain, the relationship between inputs

and outputs of the non-linear systems can be defined as

follows [3].

Fig. 2. Volterra model structure.

It is seen from Fig. 2 that the non-linear system is

composed of N parallel subsystems from 1 1()h 

to

1(,...,)n nh   . The input signal, u(t), is applied to each

subsystem and the output signal, yn(t), is obtained from

each subsystem. At the end, outputs of subsystems are

added and the output of entire system, y(t), is generated.

This structure can be defined as a mathematical expression

in Equation (1).

 1

() ()
N

n

n

y t y t




 (1)

Each subsystem output is defined in the time domain

as Equation (2).

Investigaton of computational load and parallel computing of Volterra series method for frequency analysis of nonlinear systems 557

1

1

() ... (,...,) ()
n

n n n i i

i

y t h u t d   
 

 

   , 0n 

 (2)

where
1(,...,)n nh   defines nth order impulse response

function of nth order subsystem. Because of multi-

dimensional structure of right side of Equation (2), the

multi-dimensional Fourier transformation should be

applied to Equation (2) for transformation to frequency

domain. To do so, yn(t) is formed as Equation (3) and the

constraint in Equation (4) must be assured.

   

11, , |
nn n n t t ty t y t t    (3)

 1

n

i

i

 


 (4)

where ωi defines of input harmoic frequencies. If the

multi-dimensional Fourier transformation is applied to

Equation (2) under the constraints of Equation (3) and (4),

yn(t) function is obtained in the frequency-domain as Yn

(jω), in Equation (5).

1

1 1 11
1

1
() (,...,) () ,...,

(2)
n

i

i

n

n n n i nn
i

n
Y j H j j U j d d

 
     














 (5)

In Equation (5), U(jω) is termed as Fourier transform

of the input and  1, ,n nH j j  is termed as nth

order Frequency Response Function (FRF). As a result, the

output of the system in the frequency-domain can be

written as the sum of all output components as in Equation

(6).

  
1

()
N

n

n

n

Y j A Y j 


 (6)

3. Computation of higher order frequency
 response functions with harmonic probing
 method

The most common methods of mathematical

modelling of systems are methods which use parametric

approaches such as differential or difference equations.

One of them which is used to represent continuous-time

non-linear systems (without delayed) is NDE (Non-linear

Differential Equations) model.

 

 

 

 
1

, 1

1 0 , 0 1 1

() ()
(,...,) 0

i i

i i

p q

l lp p qM m L

p q p q l l
m p l l i i p

d y t d u t
c l l

dt dt






     

   

 (7)

Where li denotes the order of the derivative, cp,q(l1,…,lp+q)

terms coefficients of the model, p number of the output

components, q number of the input components of the

terms, M is maximum order of nonlinearity and m is

maximum order of input nonlinearity. As an example, a

mechanical system modelled with a differential equation is

given in Fig. 3 and Equation (8) [21].

m

k
a1 a2 a3

f(t)

x(t)

Fig. 3. Mechanical system model.

2 32

1 2 32

() () () ()
() () 0

d x t dx t dx t dx t
m kx t a a a f t

dt dt dt dt

   
        

   

(8)

The terms coefficients of this differential equation are

determined according to the NDE model as Equation (9).

1,0 (2)c m ,
1,0 1(1)c a , 1,0 (0)c k , 0,1(0) 1c   ,

2,0 2(1,1)c a , 3,0 3(1,1,1)c a

others

, 0p qc 

(9)

In this presented study, the harmonic probing

algorithm, which is based on The Volterra Series, has been

used for the frequency analysis of the non-linear system in

Equation (8). The harmonic probing algorithm was

developed by Billings and Peyton Jones in works realized

in 1989 and 1990 [9, 10]. With this method, the system

FRFs are obtained using the system's parameters. Thus,

the frequency-domain behaviours of the systems can be

analyzed.

Terms of the systems and their contributions to nth

order FRF are examined into three groups in the harmonic

probing method and the exponential input method: non-

linear terms containing only input component ((.)
unH),

non-linear terms containing only the output ((.)
ynH) and

non-linear terms containing input and output components

together ((.)
uynH) [10]. This method is used for

expressing nth order FRF an asymmetric structure as

follows.

558 S. Kaçar, İ. Çankaya, A. F. Boz

 

     

  1

1

1

1 1 1

1,0 1 1

0

, ,

, , , , , ,

()

u uy y

asym

n n

n n n n n n

L
l

n

l

H j j

H j j H j j H j j

c l j j

 

     

 


 

      
 



 (10)

Contributions of (.)
unH , (.)

ynH

and (.)
uynH

functions to nth order FRF are defined with following

formulas.

   
1

1 0, 1

, 0 1

, , (, ,)
i

u

n

L n
l

n n n n i

l l i

H j j c l l j  
 

    (11)

     
1

1 ,0 1 , 1

2 , 0

, , , , , ,
y

n

n L

n n p p n p n

p l l

H j j c l l H j j   
 

    (12)

   
1

1

1 , 1

1 1 , 0

, , , ,
uy

n

n qn L

n n p q p q

q p l l

H j j c l l 




  

  

    , 1

1

, ,
i

p q
l

n q p n q i

i n q

H j j j  


 

  

  (13)

If the above equations are examined carefully, it can

be said that the terms which exist only the nth order non-

linear input component can contribute to only the nth order

FRF. Contributions of the terms containing output

component to nth order FRF are determined by the

function expressed with , ()n pH  . This function can be

produced with two different algorithms [16, 17]. The first

of these is an recursive algorithm [10].

 

 

, 1

1

1 , 1 11

1

, ,

, , (, ,)() p

asym

n p n

n p
l

i i n i p

i

i n i

H j j

H j j H j j j j

 

     


 







 

  

(14)

 ,1 1 1 1, , (, ,)() plasym

n n n n iH j j H j j j j        

 (15)

Because the algorithm given in Equation (14) and (15)

is recursive, the algorithm has computationally intensive

for production of higher order FRFs [16, 17]. The new

algorithm of PEYTON JONES in [16] was developed in a

more simple structure to eliminate the disadvantage of the

old algorithm. In the new algorithm, features of the

exponential input method were used as in the old

algorithm and , ()n pH  function was produced for each

term of the system model.

In spite of the old algorithm, the lower order FRFs

which can be used for computing the nth order FRF, are

determined with lower process load in the simplified

algorithm. Then, , ()n pH  function is produced and it is

substituted into Equation (12) or (13). The flowchart in

Figure 4 explains how the simplified algorithm works. The

process in the first step of the flowchart determines

combinations of the lower order FRFs which can be

contribute to nth order FRF and whose orders summation

is equal to n (

1

p

i

i

n


).
i expresses the orders of

FRFs which can be contribute to nth order FRF. In the

second step, input harmonics in set

 1, , n  are

grouped according to produced combinations. In the third

step,
1

(, ,)
pyf  w w defines terms which must be in

, ()asym

n pH  function except the lower order FRFs.
i

w

defines a group of the input harmonics which is

determined with  1, , p  combination and has i

frequency components. In this step,
1

(, ,)
pyf  w w is

computed for all permutations of each combinations

produced in former steps. In the last step, desired

, ()asym

n pH  function is computed with obtained terms and

the simplified algorithm is finalized.

Start

Group the input harmonics

according to combinations

obtained former step

End

    
1

1

(/)

, 1 1 , 1 2

1: 1

: 1

, , , , ,
floor n p

n p p n p p

p

n p

S S 



     






  

 

 
 

    1 1

1

,

, ,

1, ,

. , ,
p p

p

asym

n p

all combinations

of taken

from N repeatedly

H H j H j   

 



  w w

 
 

 
1

1

1

, ,

, ,
i

p i

p

p
l

y

all permutations i

of

f j  

 





    w w w

1

(, ,)
pyf  w w

Fig. 4. Simplified Volterra Series method.

After computation of , ()n pH 

functions, the method

is continued to apply. The desired (nth order) asymmetric

FRF (()asym

nH ) is computed by using Equation (10),

(11), (12) and (13). In this step, there is an important

problem because of  1, ,n nH j j  function. In

FRFs, if order of the input harmonics changes, the FRF

changes. But this change may not effect the output

function (yn(t)) [14]. For eliminating this problem, the

symmetric FRF ((.)sym

nH) is used and a better analysis

can be performed. The result of (.)sym

nH function is

independent from the order of variables. The symmetric

function is formulated as Equation (16) [16, 17].

1

1 1

{ ,..., }

1
(,...,) (,...,)

!
n

sym asym

n n n n

all permutations

of set

H j j H j j
n

 

    

 (16)

Investigaton of computational load and parallel computing of Volterra series method for frequency analysis of nonlinear systems 559

For example, in the symmetrization process of 5th

order asymmetric FRF, n!=120 permutations of n=5 input

harmonics are generated firstly as Table 1.

Table 1. Generation of permutations for a 5th order FRF.

 m

n

asyH 
Harmonics

1. 2. 3. 4. 5.

P
er

m
u
ta

ti
o
n
s

1. 1j 2j 3j 4j 5j

2. 2j 1j 3j 4j 5j

3.
3j 2j 1j 4j 5j

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

118. 5j 4j 2j 3j 1j

119. 5j 4j 3j 1j 2j

120. 5j 4j 3j 2j 1j

After obtaining the permutations, they are applied to

the FRF one by one and all results are added. Finally the

summation is divided by the number of permutations and

the symmetric function is obtained as Equation (17).

 

   

 

2 41 3 5

1 1

1 1

5 5 5 2 3 4 5

{ , , , , }

5 2 3 4 5 5 2 3 4 5

5 3 2 4 51

1
, , (, , , ,)

5!

, , , , , , , ,

, ,
1

120

, ,

asym

all permut

sym

asym asym

asy

ations of

e

m

s t

j H j j j j j

j j j j j j j j

j j j

H j

H

j

j H j

H j

    

      

         

    





  





 

   

 



 

   

5 5 4 3 2

5 5 4 3 2 5

1

1 5 4 3 2 1

, , , ,

, , , , , , , ,

asym

asym asym

j j j j

j j j j j j j

H j

H j H j j

    

         






       

   

 







 
 
 



(17)

As an example, the parameters of the system model in

Equation (8) are determined as in Equation (18) and the

5th symmetric FRF can be used for getting results.

m=240 kg, k=16000 N/m, a1=296 Ns/m, a2=2000 Ns/m,

a3=800 Ns/m (18)

The graphics in Figs. 5 and 6 are the magnitude and

the phase response of the 5th symmetric FRF of the system

for the parameters in Equation (18). Since the FRF is 5th,

there are five input harmonics according to the method.

For that reason the graphics are 3-D. Because of

dimensions limitation, some of the harmonics are chosen

at same frequency value for visualisation the results. In the

graphics, the x axis is defined as 1 2 3 4      and

the y axis is defined as 5 . The values of x and y axis are

between 0 and 20 rad/sec. The z axis contains the results.

Figs. 7 and 8 are the contour plots of Figs. 5 and 6 that

they can be used for more detailed examination.

Fig. 5. Magnitude graphic of 5th order FRF.

Fig. 6. Phase graphic of 5th order FRF.

Fig. 7. Contour plot of magnitude graphic of

5th order FRF.

560 S. Kaçar, İ. Çankaya, A. F. Boz

Fig. 8. Contour plot of phase graphic of 5th order FRF.

Sample applications of the old and new algorithms

presented in [16] can be seen broadly in the study of
KAÇAR [17].

4. Investigation of computational load

In the Volterra Series method, the most important

factors, which effect computational load and realization
time of analysis, are the order of desired FRF and the
number of output components in analyzed term. If the
order of terms and FRFs increases, computational load and
realization time of analysis increases too and this situation
is normal. Spectacular feature of the situation is the
logarithmic increment of the number of combinations and

permutations, as in Table 2. Entire numbers of
combinations and permutations, which can contribute nth
order FRF, are given in Table 2 for all , ()asym

n pH  functions
which can consist up to n=10. The numbers of
combinations and permutations are related to the desired
FRF order (n) and the number of output components of
analyzed term (p). The numbers in Table 2 are obtained as
results of former three steps of the simplified algorithm.

When the analysis is performed by using the
simplified algorithm, the process load (number of
combinations and permutations) may be very low or high
according to values of n and p, as seen in Table 2.
Especially, for higher order FRFs, there are too many
permutations remarkably for some p numbers. In Table 2,
all numbers of combinations and permutations are 1, if p is
equal to n or 1 for all n values. When n increases, number
of combinations and permutations increases also. The most
remarkable point in Table 2 is that number of permutations
is maximum value, when p is equal to n/2 for even n
numbers and p is equal to up(n/2) for odd n numbers. For
other p values, numbers of combination and permutations
are lower. For example, the highest combination and
permutation values (7 and 126) consist for n=10 and p=5.
Whereas numbers of permutation is equal to 9 for p=9 or
p=2. As result, the process load relates n and p values and
it also relates the difference between n and p. Process time
of each step and total process time of the simplified
algorithm is shown in Table 3. The time periods in Table 3
are obtained by using a computer which has a
configuration as seen in Table 4.

Table 2. The numbers of combinations and permutations for all
, ()asym

n pH  functions up to n=10.

n,p
The numbers of
combinations

The numbers of
permutations

n,p
The numbers of
combinations

The numbers of
permutations

1,1 1 1 8,1 1 1
2,1 1 1 8,2 4 7
2,2 1 1 8,3 5 21
3,1 1 1 8,4 5 35
3,2 1 2 8,5 3 35
3,3 1 1 8,6 2 21
4,1 1 1 8,7 1 7
4,2 2 3 8,8 1 1
4,3 1 3 9,1 1 1
4,4 1 1 9,2 4 8
5,1 1 1 9,3 7 28
5,2 2 4 9,4 6 56
5,3 2 6 9,5 5 70
5,4 1 4 9,6 3 56
5,5 1 1 9,7 2 28
6,1 1 1 9,8 1 8
6,2 3 5 9,9 1 1
6,3 3 10 10,1 1 1
6,4 2 10 10,2 5 9
6,5 1 5 10,3 8 36
6,6 1 1 10,4 9 84
7,1 1 1 10,5 7 126
7,2 3 6 10,6 5 126
7,3 4 15 10,7 3 84
7,4 3 20 10,8 2 36
7,5 2 15 10,9 1 9
7,6 1 6 10,10 1 1
7,7 1 1

Investigaton of computational load and parallel computing of Volterra series method for frequency analysis of nonlinear systems 561

Table 3. Obtained periods of all
, ()asym

n pH  functions up to n=10.

N,p

Comb.

Time

(sec.)

Group

Time

(sec.)

Fy Func.

Time

(sec.)

Total

Time

(sec.)

n,p

Comb.

Time

(sec.)

Group

Time

(sec.)

Fy Func.

Time

(sec.)

Total

Time

(sec.)

1,1 0.00006 0.00034 0.00032 0,00072 8,1 0.00008 0.00095 0.0010 0,00203

2,1 0.00009 0.00057 0.00049 0,00115 8,2 0.00051 0.0041 0.0117 0,01631

2,2 0.00036 0.00060 0.00059 0,00155 8,3 0.00082 0.0127 0.0301 0,04362

3,1 0.00009 0.00063 0.00067 0,00139 8,4 0.0013 0.0061 0.0576 0,065

3,2 0.00021 0.00069 0.0013 0,0022 8,5 0.0009 0.0049 0.0708 0,0766

3,3 0.00048 0.0019 0.00098 0,00336 8,6 0.00087 0.0051 0.0393 0,09117

4,1 0.00007 0.00073 0.00067 0,00147 8,7 0.00081 0.0017 0.0144 0,01691

4,2 0.00042 0.0013 0.0022 0,00392 8,8 0.0008 0.0017 0.0022 0,0047

4,3 0.00037 0.00096 0.0028 0,00413 9,1 0.00009 0.0024 0.0012 0,00369

4,4 0.00052 0.0010 0.0013 0,00282 9,2 0.00052 0.0101 0.0126 0,02322

5,1 0.00009 0.00083 0.00088 0,0018 9,3 0.0011 0.0137 0.0459 0,0607

5,2 0.0004 0.0016 0.0035 0,0055 9,4 0.0013 0.0072 0.0864 0,0949

5,3 0.00056 0.0019 0.0084 0,01086 9,5 0.0013 0.0070 0.1228 0,1311

5,4 0.00050 0.0012 0.0062 0,0079 9,6 0.0011 0.0046 0.1288 0,1345

5,5 0.00055 0.0012 0.0014 0,00315 9,7 0.00095 0.0034 0.0533 0,05765

6,1 0.00009 0.00092 0.00098 0,00199 9,8 0.00087 0.0020 0.0283 0,03117

6,2 0.00051 0.0028 0.0052 0,00851 9,9 0.0010 0.0021 0.0028 0,0059

6,3 0.00066 0.0029 0.0105 0,01406 10,1 0.00009 0.0011 0.0012 0,00239

6,4 0.00064 0.0026 0.0124 0,01564 10,2 0.0016 0.0068 0.0187 0,0271

6,5 0.00056 0.0012 0.0078 0,00956 10,3 0.0012 0.0125 0.0487 0,0624

6,6 0.0007 0.0013 0.0018 0,0038 10,4 0.0016 0.0115 0.1203 0,1334

7,1 0.00005 0.00088 0.00099 0,00192 10,5 0.0018 0.0101 0.2336 0,2455

7,2 0.00039 0.0064 0.0057 0,01249 10,6 0.0015 0.0076 0.3160 0,3251

7,3 0.0008 0.0050 0.0298 0,0356 10,7 0.0011 0.0069 0.2559 0,2639

7,4 0.00075 0.0042 0.0435 0,04845 10,8 0.0010 0.0036 0.0773 0,0819

7,5 0.00065 0.0072 0.0300 0,03785 10,9 0.00097 0.0022 0.0231 0,02627

7,6 0.00076 0.0014 0.0107 0,01286 10,10 0.0011 0.0023 0.0071 0,0105

7,7 0.00075 0.0015 0.0020 0,00425

Table 4. Configuration of used computer.

Processor Model Intel(R) Core(TM) i7 CPU 950

Num. of Threads 8 threads

Processor Freq. 3.07 GHz

Ram Capacity 4.00 GB

Operating

System

Win 7 64 Bit

The results in Table 3 support the explanations of

above related to the numbers of combinations and

permutations according to n and p values and their process

load. In order to understand better the results are presented

graphically in Fig. 9.

Fig. 9. Obtained periods of all

, ()asym

n pH  functions up to n=10.

As seen in Fig. 9, while the simplified algorithm is

running, major amount of the time is spent in step of fy(.)

function which is the third step of the algorithm. The most

important and significant point of the graphic is that the

spent time is significantly related to difference between

FRF order and the number of output components more

than FRF order. As mentioned above, the maximum time

for each value of n is composed around p = n / 2.

562 S. Kaçar, İ. Çankaya, A. F. Boz

Accordingly, while the systems are being analyzed by this

method, it can be said that numbers of FRF orders should

be chosen equal or close to numbers of output components

for lower spent time periods.

The simplified algorithm examined above forms a part

of the Volterra method. After nth order asymmetric FRF is

obtained by the Volterra method, it must be symmetrized

and then true results can be obtained. So that the Volterra

method can be separated in two parts. The first part is

obtaining the nth order asymmetric FRF, the second part is

symmetrization of the FRF and obtaining the results.

When higher order FRFs are considered, the first part

spends much less time than the second part. This seems

clearly from the results in Table 5 which were obtained

from the system model in Equation (8) for m=240 kg,

k=16000 N/m, a1=296 Ns/m, a2=296 Ns/m, a3=296 Ns/m

(parameter values from [22]), 8 frequency sets up to n=8.

Table 5. Obtained time periods of FRF and the results up to n=8 for the system model in Equation (8).

n

FRF time (sec)
Symmetrization and

result time (sec)
n

FRF time (sec)
Symmetrization and

result time (sec)

1 0.00167668 0.0018734 5 0.015279 0.84472

2 0.0036378 0.0085667 6 0.033202 6.7618

3 0.0073273 0.032149 7 0.049726 60.6733

4 0.010497 0.14523 8 0.062537 606.8232

Fig. 10. Obtained time periods of FRF and the results

up to n=8 for the system model in Equation(8).

It is clear from Fig. 10 that if order (n) of the desired

FRF increases, process time also increases. However, the

difference between obtained time periods of the FRFs and

time spent for symmetrization and the results increases

logarithmically with increasing of n. For lower-order

FRFs, symmetrization and obtaining the results take less

time. When the order increases, they begin to take a lot of

time for higher order FRFs. The reason of this is

logarithmical increasing of permutations which is a result

of increasing of the order of FRF in symmetrization

process given in Equation (10). Therefore, the process load

and time spent for obtaining the results increase

logarithmically. For this reason, while an analysis of a

non-linear system is performed by The Volterra Series

method with the simplified algorithm, choosing the order

of desired FRF equal to order of the highest order term is

more useful for obtaining the results. On the other hand,

decreasing the symmetrization and result time is more

efficient way to decrease the total time of the

method.Using parallel computing methods is an

appropriate way for providing time saving.

5. Parallel computing of the method

Today, majority of the computers have multiple

processors, multi-thread CPUs or GPUs. Traditional

programming approaches are not suitable for using the

hardware. For this reason, parallel computing methods are

used to benefit the capacity of the computers fully and to

perform processes faster. There are numerous studies

about parallel computing in the field of nonlinear systems

analysis and simulation [23 - 27].

One of the main platforms of parallel programming is

the multi-thread computers. Today, a PC which has an

average configuration, has a multi-thread (2, 4, 6, 8, etc.

threads) CPU. For this reason, a complex algorithm

required high processing capacity and speed as Volterra

Series Method, especially its symmetrization process,

should be programmed in parallel to use all threads in

CPU. The architecture for used computer with a multi-

thread (N threads) CPU can be visualized generally as in

Fig. 11. If the method is programmed in parallel and run in

a computer with a multi-thread CPU which has N threads,

the method is decomposed in N threads. Thus, the

computer uses the CPU full capacity and the process is

finished in shorter time.

Investigaton of computational load and parallel computing of Volterra series method for frequency analysis of nonlinear systems 563

Fig. 11. The architecture of the used computer with a multi-thread CPU.

Fig. 12. The flowchart of the parallelized method.

Start

Input Data

Finish

Producing necessary

symbolic FRFs by

Simplified Algorithm

Symmetrisation and

Numerical Results

Graphical
Results

Symmetrisation and

Numerical Results

Symmetrisation and

Numerical Results

Symmetrisation and

Numerical Results

Thread 1 Thread 2

Thread i

Thread 8

Shared Memory

Cache 1

Cache 2

Cache M

T
h

re
ad

 1

T
h

re
ad

 2

T
h

re
ad

 3

T
h

re
ad

 4

T
h

re
ad

 N
-1

T
h

re
ad

 N

Core 1 Core 2 Core M

564 S. Kaçar, İ. Çankaya, A. F. Boz

The method has been coded in data-parallel by using

MATLAB program and its parallel processing toolbox.

This toolbox provides programming in all parallel

approaches (task-parallel, data-parallel, distributed

computation, CUDA and multi-thread programming) [28].

In this study, for data-parallel programming, parallel “for”

(parfor) loops provided by MATLAB parallel processing

toolbox have been used with the computer introduced in

Table 4 for computing numerical results of the system

given in Equation (8) . The parallelization of the method is

shown in Fig. 12. As seen in Fig. 12, symmetrisation and

computing numerical results step is parallelized and same

tasks for different data are processed concurrently by 8

threads in CPU.

Table 6. Process times obtained after parallel computing (in seconds).

 Number of threads

 sequental 2 3 4 5 6 7 8

O
rd

er
 o

f
F

R
F

1 0.0018734 0.10931 0.12956 0.13632 0.16119 0.20276 0.22 0.23824

2 0.0085667 0.16807 0.21187 0.21576 0.23543 0.27783 0.31698 0.34043

3 0.032149 0.17643 0.21395 0.22001 0.24021 0.2789 0.31784 0.38403

4 0.14523 0.23629 0.2598 0.24593 0.28585 0.31233 0.34678 0.38868

5 0.84472 0.56451 0.47831 0.43685 0.42302 0.49162 0.57606 0.54123

6 6.7618 3.4361 2.6603 1.9168 2.1936 2.3569 2.3526 1.8041

7 60.6733 29.4879 22.1357 15.3056 16.412 18.3519 19.0018 13.2724

8 606.8232 296.2393 228.5412 153.9728 168.0649 185.03 199.2235 130.1962

Process times obtained after parallel computing of

symmetrisation and numerical results step are given in

Table 6. The time results have been obtained for the FRFs

up to 8
th

 order by using 8 frequency sets (one set for each

thread). These results should be used for determining the

performance of the parallel computing. The performance

can be assessed with criterias such as speedup and

efficiency. The speedup and the efficiency are computed

by using Equation 19 and 20 [29].

Sp(n) = T*(n) / Tp(n) (19)

Ep(n) = Sp(n) / p (20)

where p is the number of threads, n is order of FRF as

identifier of computation load of the process, Sp(n) is

speedup, T*(n) is the process time of n
th

 order FRF as

sequential algorithm performed with single thread in Table

6, Tp(n) is the process time of n
th

 order FRF processed

with p threads and Ep(n) is the efficiency. Fig. 13 and 14

show the speedup and the efficiency of parallel computing.

Fig. 13. Speedup of parallel computing.

Fig. 14. Efficiency of parallel computing.

Investigaton of computational load and parallel computing of Volterra series method for frequency analysis of nonlinear systems 565

For the sample model in Equation 8, Fig. 13 and 14

shows that the multi-thread acceleration is not effective for

lower order FRFs, but it is very useful for higher order

FRFs bigger than 4
th

 order. Because the parallel overheads

of the parallel computing are higer than the process times

of lower order FRFs. So, it can be said that the parallel

computing should be applied for computing FRFs which

have high complexity and computational load.

The other factor affecting the performance of the

parallel computing is the number for threads. It is expected

that the speedup increases proportionally with number of

threads, but the parallel overhead and the unbalanced load

block the proportional increase. The speedup graphic in

Fig. 13 shows that the speedup increases between 2 and 4

threads and then it decreases between 4 and 7 threads. For

8 threads, the speedup is at the top point of the graphic.

Although the speedup is the highest value for 8 threads, it

can not be said the same for the efficiency. For 8
th

 order

FRF, the efficiency is the highest value for 2 threads and

the lowest value for 7 threads and for 8 threads the

efficiency is nearly 0.6. Because of the appropriate parallel

overhead and computational load, processes for 2 and 4

threads are the most efficient. At the same time, the

efficiency is higer than 1 for the process of 2 threads. This

is called superlinearity in parallel computing [30].

All of these put forth the speedup and the efficiency

of parallel computing of Volterra Series Method are

releated with the complexity of the model, load balance of

the threads and parallel overhead of the process. While

selecting of order of FRFs and number of threads, these

factors should be considered.

6. Conclusions

In this work, the simplified algorithm which was

presented by PEYTON JONES was coded in MATLAB
®

platform and the spent time periods for each step of the

algorithm and symmetrization process were determined for

a third order non-linear system. So that, for the computer,

the process load of the algorithm steps and symmetrization

process was designated. Obtained time periods were

presented in tabular form and were visualized graphically.

After that, parallel computing of the method performed

with multi-thread (8 threads) computer.

It is seen that major part of spent time for

implementation of the method, especially for higher order

FRFs, is used for symmetrization process, when obtained

results are analyzed. Creation process of fy(.) function is

determined as the longest process in the simplified

algorithm. The common point of symmetrization and

creation of fy(.) function is that these processes contain a

large number of permutations related to desired FRF order.

According to this situation, it can be said that the process

load of the new Volterra Series Method presented by

PEYTON JONES consists mainly because of permutation

operations. Besides, since number of permutations

increases because of increasing of the FRF orders, the time

periods of processes also increase. This increment,

especially for symmetrization process, is logarithmic. This

significantly reduces effective availability of the method

for higher order systems and FRFs.

One of the ways to use the method more effectively is

parallel programming and multi-thread programming is the

most general and simple type of the parallel programming.

In this study, Volterra Series Method is coded in parallel

by using parallel “for” loops provided by MATLAB
®

Parallel Processing Toolbox for parallel computing. As a

result of this, it is seen that the parallel computing is more

efficient for higher order and complex FRFs. The parallel

overhead and the load balancing are two factors which

affect the speedup and the efficiency. So, the number of

threads and the order of FRFs should be selected

appropriately for a good speedup and efficiency. To get

better results, Volterra Series Method can be modified as a

parallel algorithm for parallel programming.

Acknowledgements

The authors gratefully acknowledge that this work

was supported as a project (project no: 2013-50-02-003)

by Sakarya University Scientific Research Projects

Coordinatorship.

References

 [1] W. L. Brogan, Modern Control Theory, Prentice-Hall,

 New Jersey, (1991).

 [2] G. Kerschen, K. Worden, A. F. Vakakis, J. C.

 Golinval, Mech. Syst. Signal Pr., 20, 505 (2006).

 [3] V. Volterra, Blackie and Son Limited, London,

 (1930).

 [4] M. B. Brilliant, Theory of the analysis of non-linear

 systems, Technical Report: MIT Research Lab of

 Electronics, Cambridge, Massachusetts, (1958).

 [5] E. Bedrosian, S. O. Rice, Proc. IEE, 59, 1688 (1971).

 [6] S. A. Billings, K. M. Tsang, Mech. Syst. Signal Pr.,

 3(4), 319 (1989).

 [7] S. A. Billings, K. M. Tsang, Mech. Syst. Signal Pr.,

 3(4), 341 (1989).

 [8] S. A. Billings, K. M. Tsang, G. R. Tomlinson, Mech.

 Syst. Signal Pr., 4(1), 3 (1990).

 [9] J. C. Peyton Jones, S. A. Billings, Int. J. Control,

 50(5), 1925 (1989).

[10] S. A. Billings, J. C. Peyton Jones, Int. J. Control,

 52(4), 863 (1990).

[11] M. Morhac, Appl. Math. Comput., 38(2), 87 (1990).

[12] S. A. Billings, Z. Q. Lang, Int. J. Control, 68(5), 1019

 (1997).

[13] A. Chatterjee, N. S. Vyas, J. Sound Vib., 268, 657

 (2003).

[14] M. Schetzen, The Volterra and Wiener Theories of

 Non-linear Systems, John Wiley and Sons, New

 York, (1980).

[15] W. J. Rugh, Non-linear System Theory: The

 Volterra/Wiener Approach, John Hopkins University

 Pres, Baltimore, Maryland, USA, (1981).

[16] J. C. Peyton Jones, Mech. Syst. Signal Pr., 21, 1452

 (2007).

566 S. Kaçar, İ. Çankaya, A. F. Boz

[17] S. Kaçar, İ. Çankaya, J. Fac. Eng. Arch. Gazi Univ.,

 27(4), 797 (2012).

[18] X. J. Jing, Z. Q. Lang, S. A. Billings, Int. J. Control,

 81(2), 235 (2008).

[19] X. J. Jing, Z. Q. Lang, J. Dyn. Syst. – T. Asme, 131,

 061002-1/8 (2009).

[20] S. N. Sharma, Appl. Math. Comput., 216, 1918

 (2010).

[21] S. Caffery, J. Giacomin, K. Worden, IUTAM

 Symposium on Identification of Mechanical Systems,

 Wuppertal, Germany, 1993.

[22] Z. Q. Lang, S. A. Billings, R. Yue, J. Li, Automatica,

 43, 805 (2007).

[23] L. Zeng, J. Xiang-long, C. Xiang-dong, J. Comput.

 Nonlinear Dynam., 2, 366 (2007).

[24] I. Akhtar, O. A. Marzouk, A. H. Nayfeh, J. Comput.

 Nonlinear Dynam., 4, 041006-1/9, (2009).

[25] Y. Özyörük, E. Alpman, V. Ahuja, L. N. Long, J.

 Sound Vib., 270, 933 (2004).

[26] C. Richter, J. A. Hay, L. Panek, N. Schönwald, S.

 Busse, F. Thiele, J. Sound Vib., 330, 3859 (2011).

[27] J. I. Aliaga, P. Bientinesi, D. Davidovic, E. D. Napoli,

 F. D. Igual, E. S. Quintana-Orti, Appl. Math.

 Comput., 218, 11279 (2012).

[28] MATLAB Parallel Processing ToolboxTM 5 User’s

 Guide, The MathWorks Inc., (2010).

[29] T. Rauber, G. Rünger, Parallel Programming For

 Multicore and Cluster Systems, Springer, Verlag

 Berlin Heidelberg, (2010).

[30] A. Grama, A. Gupta, G. Karypis, V. Kumar,

 “Introduction to Parallel Computing”, Second Edition,

 Pearson Education Limited, USA, (2003).

*Corresponding author: skacar@sakarya.edu.tr

